Virtual Screening Models for Prediction of HIV-1 RT Associated RNase H Inhibition
نویسندگان
چکیده
The increasing resistance to current therapeutic agents for HIV drug regiment remains a major problem for effective acquired immune deficiency syndrome (AIDS) therapy. Many potential inhibitors have today been developed which inhibits key cellular pathways in the HIV cycle. Inhibition of HIV-1 reverse transcriptase associated ribonuclease H (RNase H) function provides a novel target for anti-HIV chemotherapy. Here we report on the applicability of conceptually different in silico approaches as virtual screening (VS) tools in order to efficiently identify RNase H inhibitors from large chemical databases. The methods used here include machine-learning algorithms (e.g. support vector machine, random forest and kappa nearest neighbor), shape similarity (rapid overlay of chemical structures), pharmacophore, molecular interaction fields-based fingerprints for ligands and protein (FLAP) and flexible ligand docking methods. The results show that receptor-based flexible docking experiments provides good enrichment (80-90%) compared to ligand-based approaches such as FLAP (74%), shape similarity (75%) and random forest (72%). Thus, this study suggests that flexible docking experiments is the model of choice in terms of best retrieval of active from inactive compounds and efficiency and efficacy schemes. Moreover, shape similarity, machine learning and FLAP models could also be used for further validation or filtration in virtual screening processes. The best models could potentially be use for identifying structurally diverse and selective RNase H inhibitors from large chemical databases. In addition, pharmacophore models suggest that the inter-distance between hydrogen bond acceptors play a key role in inhibition of the RNase H domain through metal chelation.
منابع مشابه
Inhibitor Ranking through QM Based Chelation Calculations for Virtual Screening of HIV-1 RNase H Inhibition
Quantum mechanical (QM) calculations have been used to predict the binding affinity of a set of ligands towards HIV-1 RT associated RNase H (RNH). The QM based chelation calculations show improved binding affinity prediction for the inhibitors compared to using an empirical scoring function. Furthermore, full protein fragment molecular orbital (FMO) calculations were conducted and subsequently ...
متن کاملExpression of an Mg2+-dependent HIV-1 RNase H construct for drug screening.
A single polypeptide of the HIV-1 reverse transcriptase that reconstituted Mg(2+)-dependent RNase H activity has been made. Using molecular modeling, the construct was designed to encode the p51 subunit joined by a linker to the thumb (T), connection (C), and RNase H (R) domains of p66. This p51-G-TCR construct was purified from the soluble fraction of an Escherichia coli strain, MIC2067(DE3), ...
متن کاملSelective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones
High-throughput screening of a National Cancer Institute library of pure natural products identified the hydroxylated tropolone derivatives beta-thujaplicinol (2,7-dihydroxy-4-1(methylethyl)-2,4,6-cycloheptatrien-1-one) and manicol (1,2,3,4-tetrahydro-5-7-dihydroxy-9-methyl-2-(1-methylethenyl)-6H-benzocyclohepten-6-one) as potent and selective inhibitors of the ribonuclease H (RNase H) activity...
متن کاملRibonuclease H/DNA Polymerase HIV-1 Reverse Transcriptase Dual Inhibitor: Mechanistic Studies on the Allosteric Mode of Action of Isatin-Based Compound RMNC6
The DNA polymerase and ribonuclease H (RNase H) activities of human immunodeficiency virus type 1 (HIV-1) are needed for the replication of the viral genome and are validated drug targets. However, there are no approved drugs inhibiting RNase H and the efficiency of DNA polymerase inhibitors can be diminished by the presence of drug resistance mutations. In this context, drugs inhibiting both a...
متن کاملRNase H activity associated with reverse transcriptase from feline immunodeficiency virus.
Reverse transcription of retroviral genomes requires the action of an RNase H for template switching and primer generation. In this report, we compare enzymatic properties of the RNase H associated with the reverse transcriptase (RT) from feline immunodeficiency virus (FIV) and that from human immunodeficiency virus (HIV). Both enzymes displayed substrate preference for poly[3H](rG) . poly(dC) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013